If $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, then $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ is equal to
$\sqrt {\frac{p}{q}} $
$\sqrt {\frac{q}{p}} $
$\sqrt {pq} $
$pq$
The equation $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ has
The number of values of $\theta $ in $[0, 2\pi]$ satisfying the equation $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ are
The equation $3\cos x + 4\sin x = 6$ has
The number of solution of the equation $2\cos ({e^x}) = {5^x} + {5^{ - x}}$, are
Minimum value of the function $f(x) = \left| {\sin \,x + \cos \,x + \tan \,x + \cot \,x + \sec \,x + \ cosec\ x} \right|$ is equal to